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PHASE EQUILIBRIA IN THE SYSTEMS
ETHYL 1,1-DIMETHYLETHYL
ETHER + BENZENE + 2,2,4-
TRIMETHYLPENTANE
AND BENZENE + 2,2,4-
TRIMETHYLPENTANE AT 94.00 kPa

HUGO SEGURA®*, JAIME WISNIAK®,
GRACIELA GALINDO® and RICARDO REICH*

2 Departamento de Ingenieria Quimica, Universidad de Concepcién, POB 160-C,
Concepcién, Chile; ®Department of Chemical Engineering, Ben-Gurion
University of the Negev, Beer-Sheva, Israel

( Received 8 August 2000)

Consistent vapor-liquid equilibria data at 94.00kPa have been determined for the
ternary system ethyl 1,1-dimethylethyl ether + benzene + 2,2,4-trimethylpentane and
for its constituent binary benzene + 2,2,4-trimethylpentane, in the temperature range
343 to 370 K. The systems exhibit slight positive deviations from ideal behavior and the
system benzene + 2,2,4-trimethylpentane presents an azeotrope. The VLE data have
been correlated with the mole fraction using the Redlich-Kister, Wilson, NRTL,
UNIQUAC, and Tamir relations. These models, in addition to UNIFAC, allow good
prediction of the VLE properties of the ternary system from those of the pertinent binary
systems.

Keywords: Vapor-liquid equilibrium; Fuel oxygenating additive; Unleaded gasoline;
Ether; ETBE

INTRODUCTION

Recent years have seen the substitution of lead and aromatic octane-
enhancers by oxygenates, particularly ethers. MTBE was introduced in

*Corresponding author. e-mail: hsegura@diq.udec.cl
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the 1970s and today is the primary oxygenated compound being used
to improve the octane rating of gasoline, but it has the drawbacks of
easily dissolving in water and of difficult removal from water. These
drawbacks are behind the recent decision the state of California to
phase out its use within the next years. It is important, then, to
research the possible use of other ethers of higher molecular weights,
like ETBE, which may be less harmful to the environment. ETBE
shows good characteristics for unleaded gasoline formulation includ-
ing low volatility, high-octane value, and low water solubility.

Phase equilibrium data of oxygenated mixtures are important for
predicting the vapor phase concentration that would be in equilibrium
with hydrocarbon mixtures, and scarce data are available for
multicomponent mixtures that include ETBE.

Vapor-liquid equilibrium (VLE) data for the binary systems
ETBE + benzene and ETBE + 2,2,4-trimethylpentane (isooctane)
have been reported at 94kPa by Segura et al. [1] and Wisniak et al.
[2], Clark er al. [3] have also reported the vapor pressures at (298,
323)K for a limited range of the liquid phase mole fractions. These
two binaries exhibit slight to moderate positive deviations from
ideality and do not present azeotropes. Vapor-liquid equilibrium data
for the system benzene + isooctane have been reported by Goral and
Asmanova [4] at 313.15K, by Kenny [5] at 298.15K, by Sieg [6] at
101.32kPa, and by Weissman and Wood [7] at (308.15, 318.15, 328.15,
338.15 and 348.15)K. According to these sources, the binary system
benzene + 2,2,4-trimethylpentane presents positive deviation from
ideal behavior. In addition, the systems present an azeotrope rich in
benzene, which disappears as temperature increases.

The present work was undertaken to measure VLE data for the
system ETBE + benzene + 2,2,4-trimethylpentane at 94.00kPa, for
which isobaric data are not available.

EXPERIMENTAL SECTION

Materials

ETBE (96.0 + mass %) was purchased from TCI (Tokyo Chemical
Industry Co. Ltd., Japan). Benzene (99.9 mass%) and 2,24-
trimethylpentane (99.8 mass %) were purchased from Aldrich. ETBE
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was purified to more than 99.7 + mass % by rectification in a 1-m
height - 30mm diameter Normschliffgerdtebau adiabatic distillation
column (packed with 3 x 3mm stainless steel spirals), working at a
1:100 reflux ratio. After this step, gas chromatography failed to show
any significant impurity. The properties and purity (as determined by
gas liquid chromatography) of the pure components appear in Table 1.
Appropriate precautions were taken when handling ETBE in order to
avoid peroxide formation, and benzene, a human carcinogen.

Apparatus and Procedure

An all-glass vapor-liquid-equilibrium apparatus model 601, manufac-
tured by Fischer Labor und Verfahrenstechnik (Germany), was used
in the equilibrium determinations. In this circulation-method appara-
tus, the rnixture is heated to its boiling point by a 250 W immersion
heater. The vapor-liquid mixture flows through an extended contact
line (Cottrell pump) that guarantees an intense phase exchange and
then enters a separation chamber whose construction prevents an
entrainment of liquid particles into the vapor phase. The separated gas
and liquid phases are condensed and returned to a mixing chamber,
where they are stirred by a magnetic stirrer, and returned again to the
immersion heater. The temperature in the VLE still has been
determined with a Systemteknik S1224 digital temperature meter,
and a Pt 100Q probe calibrated at the Swedish Statens Provning-
sanstilt on the IPTS-68. The accuracy is estimated as + 0.02K. The

TABLE I Mole % purities (mass %), refractive index np at Na D line, and normal
boiling points T of pure components

np (293.15K) T, (101.3kPa)/K
Component (purity/mass %) exptl. lit. exptl. lit.
ethyl 1,1-dimethylethyl ether (99.9+) 1.37594° 1.37564° 345.85*  345.86°
benzene (99.9+) 1.50113*  1.50111%  353.20° 353.21¢
2,2,4-trimethylpentane (99.9+) 1.39162° 1.39162° 372.24*  372.39°

® Measured.

b DIPPR (Daubert and Danner [12]).
¢ Krihenbiihl and Gmehling [23].

4 TRC Tables [24], a-3200.

© TRC Tables [24], a-1010.

f Boublik et al. [25].
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total pressure of the system is controlled by a vacuum pump capable of
pressures as low as 0.25kPa. The pressure has been measured with a
Fischer pressure transducer calibrated against an absolute mercury-in-
glass manometer (22-mm diameter precision tubing with cathetometer
reading), the overall accuracy is estimated as + 0.03kPa. On the
average the system reaches equilibrium conditions after 2 to 3h
operation. Samples, taken by syringing 1.0 uL after the system had
achieved equilibrium, were analyzed by gas chromatography on a
Varian 3400 apparatus provided with a thermal conductivity detector
and a Thermo Separation Products model SP4400 electronic
integrator. The column was 3m long and 0.3cm in diameter, packed
with SE-30. Column, injector and detector temperatures were (323.15,
383.15, 473.15)K respectively, for all the systems. Very good
separation was achieved under these conditions, and calibration
analyses were carried out to convert the peak ratio to the mass
composition of the sample. The pertinent polynomial fits had a
correlation coefficient R? better than 0.99. At least three analyses were
made of each composition. Concentration measurements were
accurate to better than + 0.001 mole fraction.

RESULTS AND DISCUSSION

The temperature T and liquid-phase x; and vapor-phase y; mole
fraction measurements for the system benzene (2) + isooctane (3) at
P=94.00kPa are reported in Table II and in Figures 1 to 2, together
with the activity coefficients v, which were calculated from the
following equation [8]:

wP (Ba—VI)P—P)) 6P

Invy = lnx,P? RT Y RT (1)

where T and P are the boiling point and the total pressure, VZ is the
molar liquid volume of component i, B; and By are the second virial
coefficients of the pure gases, P{ is the vapor pressure, By the cross
second virial coefficient and

6y =2By — By — By (2)
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FIGURE 1 Experimental VLE data for the system benzene (2) + 2,2,4-trimethylpen-
tane (3) at 94.00kPa: (o), experimental data reported in this work; (—), smoothed data
using the Legendre polynomial model that gives consistency to the system.

The standard state for calculation of activity coefficients is the pure
component at the pressure and temperature of the solution. Equation
(1) is valid at low and moderate pressures when the virial equation of
state truncated after the second coefficient is adequate to describe the
vapor phase of the pure components and their mixtures, and liquid
volumes of the pure components are incompressible over the pressure
range under consideration. The molar virial coefficients By; and By
were estimated by the method of Hayden and O’Connell [9] using the
parameters suggested by Prausnitz et al. [10]. Liquid volumes were
estimated from the correlation proposed by Rackett [11]. Critical
properties of both components were taken from DIPPR [12]. The last
two terms in Eq. (1), particularly the second one that expresses the
correction due to the non ideal behavior of the vapor phase,
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FIGURE 2 Activity coefficient plot of the system benzene (2)+ 2,2,4-trimethylpentane
(3) at 94.00 kPa: (»), experimental data reported in this work. (—), smoothed data using
the Legendre polynomial model that gives consistency to the system.

contributed less than 0.8% to the value of activity coefficients; in gen-
eral, their influence was important only at very dilute concentrations.

The equilibrium properties an activity coefficients of the ternary
system ETBE (1) + benzene (2) + isooctane (3) at 94 kPa are reported
in Table III. For this system -, were calculated from the following
equation [8]:

iP
%=1 3)

In Eq. (3) the vapor phase is assumed to be an ideal gas and the
pressure dependence of the liquid phase fugacity is neglected.
Equation (3) was selected to calculate activity coefficients of the
ternary system because the low pressures observed in the present VLE
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data makes these simplifications reasonable. In fact, as discussed
before, vapor phase corrections may be neglected in the system
benzene (2) + isooctane (3). In addition, and as discussed by Reich
et al. [13] and by Aucejo et al. [14], the scarce physical information
available for mixtures of ETBE with alkanes does not allow a reliable
estimation of their second virial coefficients, thus introducing
uncertainty in the estimation of vapor phase corrections.

The temperature dependence of the pure component vapor pressure
P was calculated using the Antoine equation

B,

log (P?/kPa) = A; — TR - (4)

where the Antoine constants 4;, B, and C; are reported in Table IV.
The activity coefficients presented in Tables II and III are estimated
accurate to within + 2%. The results reported in these tables indicate
that the measured systems exhibit moderate to positive deviations
from ideal behavior. In addition, Figure 1 suggests the possibility of an
azeotrope for the system benzene (2) + 2,2,4-trimethylpentane (3) at
94 kPa (x47 ~ 0.98, T ~ 350.76 K). Due to the experimental error of
our determinations, this supposition has not been proved in a definite
manner, although the evidence points to the existence of the azeotrope.
Our experimental measurements of the boiling temperatures of
benzene with traces of 2,2,4-trimethylpentane (x, > 0.99) show a small
depression in the bubble temperature, although inside the range of
experimental error. In addition, according to the data of Weissman
and Wood [7] and Sieg [6], the azeotrope of the system benzene
(2) + 2,2,4-trimethylpentane disappears at atmospheric pressure (for
x3=1). The evolution of the azeotrope in temperature coincides well
with our estimation of the azeotropic point at 94kPa.

The VLE data reported in Table II for the binary system benzene
(2) + 2,2,4-trimethylpentane (3) were found to be thermodynamically

TABLE IV Antoine coefficients, Eq. (4)

Compound A4, B, ]

ETBE® 5.96651 1151.73 55.06
Benzene® 6.08817 1243.26 48.64
2,2 4-trimethylpentane® 5.88343 1224.46 56.47

* Reich et al. [26].
b Segura et al. [1].
© Wisniak et al. [2].
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consistent by the point-to-point test of Van Ness e? al. [15), as modified
by Fredenslund et al. [16]. Consistency criteria (Ay < 0.01) were met
using a three-parameter Legendre polynomial and considering
fugacity corrections. Consistency statistics are presented in Table V,
according to which it is possible to conclude a very good fit of the data
and activity coefficients as shown in Figure 2. In addition, as shown in
Figure 3, the consistency model allows a fair prediction of the
isothermal data reported by Sieg [6], yielding an average deviation of
0.3K in bubble temperature.

The vapor-liquid equilibrium data reported in Table III for the
ternary system ETBE (1) + benzene (2) + 2,2,4-trimethylpentane (3)
were found to be thermodynamically consistent by the McDermott —
Ellis method [17], as modified by Wisniak and Tamir [18]. According
to these references, two experimental points a and b are considered
thermodynamically consistent if the following condition is fulfilled

D < Dypax (5)
where the local deviation D is given by
N
D = (xia+ xp)(Invia — Inyp) (6)
=1
and N is the number of components. The maximum deviation D,y is

given by

111
Dmax—z:(xia'f'xnb)( +—+—+—)Ax
,_1 Xia Yia Xib Yib

AP N
+ Z(xw + x,~1,)—+22|ln'm, — Invy,|Ax

+ Z(x.a +x8)B{(Ta+ C) 2+ (Ts + C) 2}AT (7

TABLE V Consistency test statistics for the binary system
cyclohexane (2) +2,2,4-trimethylpentane (3)

100 x Ay® AP°kPa
0.19 0.11

® Avera, absolute deviation in vapor phase mole fractions Ay =
1 /N o1 PP — y5%| (N: number of data points).

uhverage absolute deviation in pressure AP = 1/NY¥, |Pepii—
Pkl
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FIGURE 3 Prediction of isobaric VLE data for the system benzene (2)+2,2,4-
trimethylpentane (3): (A), experimental data of Sieg [6] at 101.32kPa; (—), predicted
from the model that gives consistency to the data measured in this work.

The errors in the measurements Ax, AP and AT were as previously
indicated. The first term in Eq. (7) was the dominant one. For the
experimental points reported here D never exceeded the maximum
value 0.023, for which the local value of D, was 0.032. In addition,
the smallest calculated value of Dy, for the present ternary data was
0.023.

The activity coefficients for the ternary system were correlated with
the Redlich-Kister expansion [19]

3 3 )
T z Z XiX; bij + ¢ (xi — x5) + dy(x; — x7) ]
=1j>1

+ x1%2x3[C + D1x1 + Dax3) (8)
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where by;, ¢;; and dj are the constants for the ij binary, and C, D, and
D, are ternary constants. All the constants in Eq. (8) are assumed to be
temperature-independent. In addition, and by the reasons explained
before, no vapor phase correction is considered for constituent binaries
in the data treatment of the ternary system. Data and constants for the
binary systems ETBE (1) + benzene (2) and ETBE (1) + 2,2,4-
trimethylpentane (3) have been calculated from the data reported by
Segura et al. [1], and by Wisniak et al. [2]. The Redlich-Kister
coeflicients for the binaries benzene (2) + 2,2,4-trimethylpentane (3)
and the values of the constants C, D; and D, for the ternary mixture,
were obtained by a Simplex optimization technique; the results are
shown in Table VI. The ternary constants C, D, and D, were not
statistically significant, suggesting that the ternary data can be
predicted directly from the binary systems. In fact, as shown in
Table VI, equilibrium vapor pressures and vapor phase mole fractions
of the ternary system were predicted very well by the Redlich-Kister
equation when using only the binary constants, where C, D, and D,

TABLE VI Constants for the Redlich-Kister model, fit, correlation and prediction
statistics. system ETBE (1) + benzene (2)+ 2,2,4-trimethylpentane (3) at 94.00kPa

Binary data (parameters for Eq. (8))
System byx 10" cyx 10" dyx 10 rmsd® x 1072 %dev® max Yede

1+2¢ 1.46 0.00 0.00 12 0.9 52
1+3° 1.18 0.00 0.00 0.4 0.7 1.3
243 424 1.36 2.13 0.1 0.4 1.2

VLE correlations and predictions

Bubble-point pressures Dew-point pressures
System AP/%T 100 x Ap® 100 x Ay,  AP/% 100 x Ax; 100 x Ax,
1429 0.12 0.2 0.2 0.16 0.2 0.2
143° 0.52 0.1 - 0.53 0.2 -
243 0.27 - 0.2 0.32 - 0.2
142438 0.33 0.3 0.2 0.33 0.2 0.2

* Root mean square deviation in activity coefficients {27{1}”"" - »yf*}’ /NY* (N: number of data
ints).

EoAverage percentage deviation in activity coefficients.

¢ Maximum percentage deviation in activity coeficients.

4 Calculated from the data of Segura et al. [1).

¢ Calculated from the data of Wisniak er al. [2].

f Average percentage deviation in pressure AP = 100/N Y7 |P‘J;" — Ple| PP

8 Average absolute deviation in mole fraction Ay = 1/N Zf" i - ¥

b Prediction from binary parameters.
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are zero. Equilibrium vapor pressures and VLE mole fractions were
also well predicted for the ternary system using the NRTL, Wilson,
and UNIQUAC models [20], but somewhat worse by the UNIFAC
model [16,21] using parameters previously fitted to the binaries.
Table VII reports results of the pertinent bubble-point pressure and
dew point pressure calculations, together with statistics and param-
eters. From these results it can be concluded again that the binary
contributions allow a good prediction of the ternary system.

The boiling points of the systems were correlated by the following
equation proposed by Tamir [22],

3
T/K = TP + x1x[An + Bu(x1 — x2) + Cia(x1 — x2)> + -]
i=1

+ x1x3[A13 + Bia(x1 — x3) + Cia(x1 — x3)2 + -]

+ Xax3[A23 + Bas(x2 — X3) + Caa (2 — x3)* + -]
)

where the coefficients 4, By and C are multicomponent parameters
determined directly from the data. The various constants of Eq. (9)
are reported in Table VIII, together with information regarding
the quality of the correlation. In addition, Figure 4 shows the
isotherms of the ternary system as calculated from Eq. (8). Inspec-
tion of Figure 4 reveals that no additional stationary points ap-
pear in boiling temperature, indicating that the ternary system
breaks the azeotrope of the constituent binary benzene (2)+2,2,4-
trimethylpentane (3).

TABLE VIII Coefficients in correlation of boiling points, Eq. (9), average deviation
and root mean square deviations in temperature, rmsd (T/K)

Max dev] Avg dev/

i]' Ag By Cy Kt Kb rmsd®
1+2 —3.176850 1.502234 —0.725882
143 —13.602111 0.363286 — 3.808850 0.17 0.06 0.05
243 —21.297318 4.527827 —1.671940

* Maximum deviations.
b Average deviations.
< rmsd (T/K): Root mean square deviation, {3 (Texpnt — Teaic)*/N}™.
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FIGURE 4 Isotherms for the ternary system ETBE (1) +benzene (2) +2,2,4-trimethyl-
pentane (3) at 94.00kPa: (—), smoothed with Eq. (9) and the coefficients given in
Table VIII. (), binary azeotrope for the system benzene (2) +2,2,4-trimethylpentane (3).
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LIST OF SYMBOLS

A; Antoine’s equation parameter, Eq. (4)

B;  Antoine’s equation parameter, Eq. (4)

By pure component second virial coefficient cm?® x mol !

By  cross second virial coefficient cm® x mol ™!

C; Antoine’s equation parameter, Eq. (4); parameters in Eq. (9)
GE  excess Gibbs energy J x mol !

P absolute pressure kPa
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pure component vapor pressure kPa
universal gas constant J x mol x K !
absolute temperature K

volume cm? x mol !

<N wY

x, y mole fractions of the liquid and vapor phases

Greek Letters

0y  parameter defined in Eq. (2) cm? x mol !
v activity coefficient

Superscripts

E  excess property
L  pertaining to the liquid phase

Subscripts

i,j component i, j respectively
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